

2021-1-DE02-KA220-ADU-000033587

1

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

Tutorial 11: Smart monitoring system

1. Introduction

1.1 What am I learning here and why?
An intelligent, integrated smart monitoring system can support you in your daily life. It

allows you to remotely monitor your home installations, i.e. check security camera feeds,

receive real-time alerts and notifications, and manage various aspects of your home's

security and automation from anywhere.

In this tutorial, you will use the sensors and components that you used in the previous

tutorials in order to create a smart monitoring system for your SmartHome house model.

You will need to use the knowledge acquired since the first tutorial and put it into

practice.

The goal is to utilize the OLED display in order to display information on all connected

sensors and electronics.

1.2 Learning Objectives
After you have completed the tutorial you will

• Understand the use and characteristics of the OLED display.

• Be able to create a smart monitoring system that provides information on all

connected electronics and sensors.

1.3 What do I need?
Software

So that you can carry out the installations shown in this tutorial you should have

downloaded the Thonny programming environment on your device. Also, you need to

have installed the firmware of MicroPython on your Raspberry Pi Pico. The extended

modifications (see p 42 in manual) including the extra components and their connectivity

must also be made on the breadboard.

Electrical Hardware

• 1 x Raspberry Pi Pico

• 1 x Full-size breadboard

• 1 x Micro-USB cable

• Jumper wires as needed

• 1 x OLED SSD1306 display

• 5 x 220 Ohm resistor

• 2 x 1k Ohm resistor

• 1 x LDR photoresistor

• 1 x HC-SR04 ultrasonic sensor

2021-1-DE02-KA220-ADU-000033587

2

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

• 1 x 100nF Capacitor

• 1 x Push button

• 1 x PIR motion detector sensor

• 4 x LEDs

• 1 x DHT11 sensor

• 1 x Traffic lights LED

• 2 x SG90 servo motor

• 1 x MQ-135 air quality sensor

• 1 x Fan

• 1 x Buzzer

• 1 x Flame detection sensor

• 1 x TIP-120 control module

• 1 x Raindrop sensor

• 1 x Diode 1N40007

• 1 x RFID reader RC522

• 1 x Rotary potentiometer

• 1 x RFID key fob

To attach components at SmartHome4Seniors house model

Please check out all previous tutorials and the manuals for technical composition of the

house model. Completion of the previous tutorials is considered a precondition for this

tutorial.

Ability

As regards physical skills you should be able to count off holes on the breadbord and

insert components to it.

2. Learning content

2.1 Theoretical background
What is an OLED SSD1306 display?

An OLED SSD1306 display is a type of electronic display that uses OLED (Organic Light-

Emitting Diode) technology and is controlled by an SSD1306 display driver IC (Integrated

Circuit). OLED is a display technology that uses organic compounds to emit light when an

electric current is applied. Unlike traditional LCD displays, OLEDs do not require a

backlight, which allows them to be thinner, lighter, and more power-efficient. OLED

displays offer vibrant colors, high contrast ratios, and fast response times, making them

suitable for various applications, including smartphones, TVs, and small screens like those

found in wearables and IoT devices. The SSD1306 is an OLED display driver IC

2021-1-DE02-KA220-ADU-000033587

3

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

(Integrated Circuit) manufactured by Solomon Systech. This driver IC is designed to

control OLED displays and is commonly used for small monochrome OLED screens. It

communicates with a microcontroller or other control circuitry to display text, graphics, and

images on the OLED screen. The SSD1306 IC is compatible with various microcontrollers

and development platforms, making it a popular choice for hobbyists and developers.

Figure 1 OLED SSD1306 display

OLED SSD1306 displays are often used in DIY electronics projects, embedded systems,

and wearable devices because of their compact size, low power consumption, and sharp

image quality. These displays are available in various sizes, resolutions, and

configurations, and they are commonly used in applications like smartwatches, fitness

trackers, digital cameras, and IoT devices where space and power efficiency are important

considerations.

Developers can program the SSD1306 display to show text, graphics, and even simple

animations, making it a versatile choice for adding a visual interface to electronic projects.

Libraries and libraries exist to facilitate interfacing with these displays, making it relatively

easy to integrate them into different microcontroller-based projects.

To use the OLED SSD1306 display you will need to install the necessary libraries to your

Raspberry Pi Pico. Initial information is provided on page of the SmartHome4Seniors

manual. However, additional information is provided below in section 2 of this tutorial.

2.2 Step-by-Step Guide
Now let's move on to the implementation of the before mentioned scenario. To do this,

take the SmartHome4Seniors house model or just look at the instructions and

recordings.

Three steps are required for installing the smart monitoring system using the OLED

Display. These are:

1. Install the SSD1306 package to your Raspberry Pi Pico

2. Connect the OLED Display to your Breadboard

3. Write the Micro Python code

Now, let’s bring our monitoring system to life.

2.2.1 Install the SSD1306 package to your Raspberry Pi Pico
Before starting programming, the OLED display, you first need to add the SSD1306

package to your Raspberry Pi Pico. To do that, please follow the next steps:

1. Open Thonny and go to Tools → Manage packages…

2021-1-DE02-KA220-ADU-000033587

4

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

2. In the manage packages window, type SSD1306 and click Search.

2021-1-DE02-KA220-ADU-000033587

5

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

3. Once search is over, click on the micropython-ssd1306.

4. On the next window, click Install.

5. Wait for package installation, then click close.

In addition, you can always use the ssd1306.py code which you can find in the appendix

of this tutorial.

Now, you are ready to proceed with programming the OLED display and all other

sensors and electronics.

2.2.2 Connect the OLED Display to your Breadboard

2021-1-DE02-KA220-ADU-000033587

6

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

Open Thonny Python, then go to File → Save as…, choose Raspberry Pi Pico, and save

your file under the name main.py. You should have by now all electronics and sensors

mounted to the SmartHome model and connected to the breadboard.

To connect the OLED display you will need 4 male-to-female jumper wires, and to mount

it on the SmartHome model you will need 4 M2 metal bolts and 4 M2 metal nuts.

Wiring diagram for the OLED display:

– connect the red cable to 3v3 rail (+)

– connect the black cable to GND rail (-)

– connect the green cable to GPIO14 I2C1 SDA pin

– connect the blue cable to GPIO15 I2C1 SCL pin

2021-1-DE02-KA220-ADU-000033587

7

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

Complete wiring diagram for SmartHome4SENIORS Kit:

2.2.3 Write the Micro Python code
The MicroPython code for this tutorial is a compilation of code from the previous tutorials.

It contains the setup and control for various components such as pins, sensors, servos,

LEDs, buzzers, and displays. It also contains information on how to use the components

of the previous tutorials, such as a garage door opener, entrance door security system,

doorbell, smart lights, smart thermostat, smart fire alarm, smart air quality detection

system, smart rain detection system, and smart security system. The code includes

functions that interact with the components and perform actions based on sensor input.

In principle, it should look something like the following:

from machine import Pin, ADC, PWM, I2C

from servo import Servo

from hcsr04 import HCSR04

from dht import DHT11

from mfrc522 import MFRC522

from ssd1306 import SSD1306_I2C

from time import sleep

#Define pins for each component

PIN_TRIG = 21

PIN_ECHO = 20

PIN_DOOR = 0

2021-1-DE02-KA220-ADU-000033587

8

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

PIN_GARAGE = 1

PIN_RED = 3

PIN_YELLOW = 4

PIN_GREEN = 5

PIN_BUZZER = 6

PIN_BUTTON = 7

PIN_PIR = 22

PIN_LED_1 = 10

PIN_LED_2 = 11

PIN_GAS = 12

PIN_RAINDROP = 13

PIN_LDR = 26

PIN_POT = 27

PIN_DHT = 8

PIN_FAN = 9

PIN_FLAME_SENSOR = 2

PIN_SDA = 17

PIN_SCK = 18

PIN_MOSI = 19

PIN_MISO = 16

PIN_RST = 28

PIN_SDA_OLED = 14

PIN_SCK_OLED = 15

#Setup global variables

WIDTH = 128

HEIGHT = 64

MAX = 65535

MID = 32768

MIN = 0

#Setup button

button = Pin(PIN_BUTTON, Pin.IN, Pin.PULL_DOWN)

#Setup buzzer

buzzer = Pin(PIN_BUZZER, Pin.OUT)

buzzer.value(0)

#Setup PIR sensor

PIR = Pin(PIN_PIR, Pin.IN, Pin.PULL_UP)

#Setup LED lights

led_1 = PWM(Pin(PIN_LED_1))

led_2 = PWM(Pin(PIN_LED_2))

led_1.freq(1000)

2021-1-DE02-KA220-ADU-000033587

9

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

led_2.freq(1000)

led_1.duty_u16(MIN)

led_2.duty_u16(MIN)

sleep(5)

#Setup LDR photoresistor

LDR = ADC(Pin(PIN_LDR))

LDR_MAX = 4000

LDR_MIN = 50

LDR_THRESHOLD = int((LDR_MAX + LDR_MIN)/2)

#Setup POT potentiometer

POT = ADC(Pin(PIN_POT))

#Setup for HC-SR04 ultrasonic sensor

ultrasonic = HCSR04(PIN_TRIG, PIN_ECHO)

#Setup for traffic lights module

ledred = Pin(PIN_RED, Pin.OUT)

ledyellow = Pin(PIN_YELLOW, Pin.OUT)

ledgreen = Pin(PIN_GREEN, Pin.OUT)

ledred.value(0)

ledyellow.value(0)

ledgreen.value(0)

#Setup for entrance door

door = Pin(PIN_DOOR)

entrance_door = Servo(pin_id=door)

entrance_door.write(120) #number should be adjusted depending on

at what angle you have placed the door on the servo motor

#Setup for garage door

garage = Pin(PIN_GARAGE)

garage_door = Servo(pin_id=garage)

garage_door.write(145) #number should be adjusted depending on at

what angle you have placed the garage door on the servo motor

#Setup flame sensor

flame_sensor = Pin(PIN_FLAME_SENSOR, Pin.IN)

#Setup DHT sensor

dht = DHT11(PIN_DHT)

#Setup DC fan

fan = Pin(PIN_FAN, Pin.OUT)

2021-1-DE02-KA220-ADU-000033587

10

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

#Setup RFID Reader RC522

RFID = MFRC522(spi_id=0, sck=PIN_SCK, miso=PIN_MISO,

mosi=PIN_MOSI, cs=PIN_SDA, rst=PIN_RST)

#Setup for raindrop sensor

rain_sensor = Pin(PIN_RAINDROP, Pin.IN)

#Setup for MQ135 air quality sensor

gas_sensor = Pin(PIN_GAS, Pin.IN)

#Setup for OLED display

i2c = I2C(1, sda=Pin(PIN_SDA_OLED), scl=Pin(PIN_SCK_OLED))

oled = SSD1306_I2C(WIDTH, HEIGHT, i2c)

oled.fill(0)

while True:

 #Tutorial 2 - Garage Door

 distance = ultrasonic.distance_cm()

 if distance > 20:

 ledred.value(1)

 ledyellow.value(0)

 ledgreen.value(0)

 garage_door.write(145)

 sleep(0.1)

 elif distance > 10:

 ledred.value(0)

 ledyellow.value(1)

 ledgreen.value(0)

 garage_door.write(145)

 sleep(0.1)

 elif distance > 5:

 ledred.value(0)

 ledyellow.value(0)

 ledgreen.value(1)

 garage_door.write(200)

 sleep(0.1)

 #Tutorial 3 - Entrance Door

 if PIR.value() == 1:

 print("Scan your Key!")

 sleep(1)

 if PIR.value() == 0:

 print("")

 sleep(1)

 RFID.init()

 (stat, tag_type) = RFID.request(RFID.REQIDL)

2021-1-DE02-KA220-ADU-000033587

11

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

 if stat == RFID.OK:

 (stat, uid) = RFID.SelectTagSN()

 if stat == RFID.OK:

 fob = int.from_bytes(bytes(uid),"little",False)

 if fob == 481642800: #change number to your fob ID

 print("Fob ID: "+ str(fob))

 #enable servo motors

 entrance_door.write(200) #number should be

adjusted depending on at what angle you have placed the door on

the servo motor

 sleep(5)

 entrance_door.write(120)

 else:

 print("Fob is not accepted")

 #Tutorial 4 - Doorbell

 if button.value():

 oled.fill(0)

 oled.text("Someone's at the door!", 0, 0)

 buzzer.value(1)

 sleep(0.5)

 buzzer.value(0)

 sleep(1)

 buzzer.value(1)

 sleep(1.5)

 buzzer.value(0)

 sleep(2)

 #Tutorial 5 - Smart Lights

 POT_value = POT.read_u16()

 #print(POT_value)

 led_1.duty_u16(POT_value)

 led_2.duty_u16(POT_value)

 sleep(0.1)

 if PIR.value():

 led_1.duty_u16(MAX)

 led_2.duty_u16(MAX)

 sleep(3)

 LDR_value = LDR.read_u16()

 print (LDR_value)

 if LDR_value > LDR_THRESHOLD:

 led_1.duty_u16(MAX)

 led_2.duty_u16(MAX)

 sleep(0.1)

2021-1-DE02-KA220-ADU-000033587

12

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

 #Tutorial 6 - Smart Thermostat

 dht.measure()

 temp = dht.temperature()

 hum = dht.humidity()

 print("Room Temp:", temp, "°C")

 print("Room Humidity:", hum, "%")

 temperature_threshold = 25 # Adjust the temperature threshold

as needed

 oled.text("Temp: ", temp, 0, 10)

 oled.text("Hum: ", hum, 0, 20)

 if temp > temperature_threshold:

 fan.value(1)

 print("Fan ON")

 else:

 fan.value(0)

 print("Fan OFF")

 sleep(3)

 #Tutorial 7 - Smart Fire Alarm

 if flame_sensor() == 0: #when "fire" is detected

 oled.text("Fire!", 0, 30)

 #buzz the buzzer

 buzzer.value(1)

 #enable servo motors

 entrance_door.write(200) #number should be adjusted

depending on at what angle you have placed the door on the servo

motor

 garage_door.write(200) #number should be adjusted

depending on at what angle you have placed the garage door on the

servo motor

 sleep(0.5) # Wait for 0.5 seconds

 else:

 buzzer.value(0)

 entrance_door.write(120) #number should be adjusted

depending on at what angle you have placed the door on the servo

motor

 garage_door.write(145) #number should be adjusted

depending on at what angle you have placed the garage door on the

servo motor

 sleep(0.5) # Wait for 0.5 seconds

 #Tutorial 8 - Smart Air Quality Detection System

2021-1-DE02-KA220-ADU-000033587

13

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

 if gas_sensor() == 0:

 oled.text("Gas Detected!", 0, 40)

 print("Gas Detected")

 #Activate the buzzer when gas is detected

 buzzer.value(1)

 sleep(0.5)

 #Turn off the buzzer after the delay

 buzzer.value(0)

 else:

 print("Gas Not Detected")

 sleep(1.5)

 #Tutorial 9 - Smart Rain Detection System

 if rain_sensor() == 1:

 print("Not raining")

 sleep(0.5)

 else:

 print("It's raining!")

 sleep(0.5)

 #Tutorial 10 - Smart Security System

 # RFID Reader RC522

 print("Bring RFID FOB closer...")

 while True:

 RFID.init()

 (stat, tag_type) = RFID.request(RFID.REQIDL)

 if stat == RFID.OK:

 (stat, uid) = RFID.SelectTagSN()

 if stat == RFID.OK:

 fob = int.from_bytes(bytes(uid), "little", False)

 print("FOB ID:", fob)

 if fob == 470550832: #change number to your fob ID

 print("FOB ID accepted")

 oled.text("You may Enter!", 0, 50)

 break

 else:

 print("FOB ID not accepted")

 # PIR Motion Sensor

 if PIR.value():

 print("Motion detected!")

 buzzer.value(1)

 sleep(0.5)

 buzzer.value(0)

 sleep(0.5)

 buzzer.value(1)

2021-1-DE02-KA220-ADU-000033587

14

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

 sleep(0.5)

 buzzer.value(0)

 sleep(0.5)

 sleep(1)

 oled.show()

2.2.4 Application on SmartHome
Now it is time to test your code and circuit on your SmartHome4Seniors house model.

Make sure to save the MicroPython code in the Raspberry Pi Pico under main.py name,

as instructed at the beginning of the tutorial. Click the Play button in Thonny and bring

your SmartHome4Seniors house model to life!

3. Summary
In this tutorial you have learned how you can connect and program an OLED display on

your house model to display information about the connected electronics and sensors.

This tutorial utilized all sensors and electronics provided in the SmartHome4SENIORS Kit

in order to simulate a fully functional smart home.

2021-1-DE02-KA220-ADU-000033587

15

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

Appendix
ssd1306.py

MicroPython SSD1306 OLED driver, I2C and SPI interfaces

from micropython import const

import framebuf

register definitions

SET_CONTRAST = const(0x81)

SET_ENTIRE_ON = const(0xA4)

SET_NORM_INV = const(0xA6)

SET_DISP = const(0xAE)

SET_MEM_ADDR = const(0x20)

SET_COL_ADDR = const(0x21)

SET_PAGE_ADDR = const(0x22)

SET_DISP_START_LINE = const(0x40)

SET_SEG_REMAP = const(0xA0)

SET_MUX_RATIO = const(0xA8)

SET_COM_OUT_DIR = const(0xC0)

SET_DISP_OFFSET = const(0xD3)

SET_COM_PIN_CFG = const(0xDA)

SET_DISP_CLK_DIV = const(0xD5)

SET_PRECHARGE = const(0xD9)

SET_VCOM_DESEL = const(0xDB)

SET_CHARGE_PUMP = const(0x8D)

Subclassing FrameBuffer provides support for graphics primitives

http://docs.micropython.org/en/latest/pyboard/library/framebuf.ht

ml

class SSD1306(framebuf.FrameBuffer):

 def __init__(self, width, height, external_vcc):

 self.width = width

 self.height = height

 self.external_vcc = external_vcc

 self.pages = self.height // 8

 self.buffer = bytearray(self.pages * self.width)

 super().__init__(self.buffer, self.width, self.height,

framebuf.MONO_VLSB)

 self.init_display()

 def init_display(self):

 for cmd in (

 SET_DISP | 0x00, # off

 # address setting

 SET_MEM_ADDR,

 0x00, # horizontal

 # resolution and layout

2021-1-DE02-KA220-ADU-000033587

16

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

 SET_DISP_START_LINE | 0x00,

 SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0

 SET_MUX_RATIO,

 self.height - 1,

 SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0

 SET_DISP_OFFSET,

 0x00,

 SET_COM_PIN_CFG,

 0x02 if self.width > 2 * self.height else 0x12,

 # timing and driving scheme

 SET_DISP_CLK_DIV,

 0x80,

 SET_PRECHARGE,

 0x22 if self.external_vcc else 0xF1,

 SET_VCOM_DESEL,

 0x30, # 0.83*Vcc

 # display

 SET_CONTRAST,

 0xFF, # maximum

 SET_ENTIRE_ON, # output follows RAM contents

 SET_NORM_INV, # not inverted

 # charge pump

 SET_CHARGE_PUMP,

 0x10 if self.external_vcc else 0x14,

 SET_DISP | 0x01,

): # on

 self.write_cmd(cmd)

 self.fill(0)

 self.show()

 def poweroff(self):

 self.write_cmd(SET_DISP | 0x00)

 def poweron(self):

 self.write_cmd(SET_DISP | 0x01)

 def contrast(self, contrast):

 self.write_cmd(SET_CONTRAST)

 self.write_cmd(contrast)

 def invert(self, invert):

 self.write_cmd(SET_NORM_INV | (invert & 1))

 def show(self):

 x0 = 0

 x1 = self.width - 1

 if self.width == 64:

 # displays with width of 64 pixels are shifted by 32

 x0 += 32

 x1 += 32

 self.write_cmd(SET_COL_ADDR)

2021-1-DE02-KA220-ADU-000033587

17

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

 self.write_cmd(x0)

 self.write_cmd(x1)

 self.write_cmd(SET_PAGE_ADDR)

 self.write_cmd(0)

 self.write_cmd(self.pages - 1)

 self.write_data(self.buffer)

class SSD1306_I2C(SSD1306):

 def __init__(self, width, height, i2c, addr=0x3C,

external_vcc=False):

 self.i2c = i2c

 self.addr = addr

 self.temp = bytearray(2)

 self.write_list = [b"\x40", None] # Co=0, D/C#=1

 super().__init__(width, height, external_vcc)

 def write_cmd(self, cmd):

 self.temp[0] = 0x80 # Co=1, D/C#=0

 self.temp[1] = cmd

 self.i2c.writeto(self.addr, self.temp)

 def write_data(self, buf):

 self.write_list[1] = buf

 self.i2c.writevto(self.addr, self.write_list)

class SSD1306_SPI(SSD1306):

 def __init__(self, width, height, spi, dc, res, cs,

external_vcc=False):

 self.rate = 10 * 1024 * 1024

 dc.init(dc.OUT, value=0)

 res.init(res.OUT, value=0)

 cs.init(cs.OUT, value=1)

 self.spi = spi

 self.dc = dc

 self.res = res

 self.cs = cs

 import time

 self.res(1)

 time.sleep_ms(1)

 self.res(0)

 time.sleep_ms(10)

 self.res(1)

 super().__init__(width, height, external_vcc)

 def write_cmd(self, cmd):

 self.spi.init(baudrate=self.rate, polarity=0, phase=0)

 self.cs(1)

 self.dc(0)

2021-1-DE02-KA220-ADU-000033587

18

This project has been funded with support from the European Commission. This publication [communication]

reflects the views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

 self.cs(0)

 self.spi.write(bytearray([cmd]))

 self.cs(1)

 def write_data(self, buf):

 self.spi.init(baudrate=self.rate, polarity=0, phase=0)

 self.cs(1)

 self.dc(1)

 self.cs(0)

 self.spi.write(buf)

 self.cs(1)

